UNCLASSIFIED

AD NUMBER

ADO0O01711

NEW LIMITATION CHANGE

TO

Approved for public release, distribution
unlimited

FROM

Distribution: No foreign.

AUTHORITY

ONR 1ltr., 9 Nov 1977

THIS PAGE IS UNCLASSIFIED




£ TR BT R ) e =

A e, T AR A e
RGN A S -&r‘u

| IO B, 2 O BNl e S
TR S AR VA W A BB i i o 35, o R BB T L T 200 S—




EXISTENCE AND UNIQUENESS THEOREMS
RELATING TO THE NAVIER-STOKES EQUATIONS
FOR INCOMPRESSIBLE FLUIDS*

by

Richard B, Barrarx

September
1952

. .
Work done at Harvarc University under Contract IT50ri-0T7634
the Gffice of Naval Research,.

{75 ’
. {

ajﬁ
:::lw
>F
= AN
& 3
=0
_< i
N
5

, with



EDITORIAL NOTE

The attacﬁed report by Dr, Barrar attempts to give a com-
plete summary of existence and unigneness fheorems for the
Navier-Stoukes equatlors for incomprestivle fluids and ralétéd
ecuations, Thia paralieis Derothy L, Bernséein's useful
svrarary of existernce and unicuenees theorems for elliptis,
hyperbolic, and varsbolic eauztions in her book Existefice

Taecreme 12 Pariial Differaeniial Equations. Only about ten

———a o

per cent of the papers covered herein are listed in Mis!
Bernstein's summary.

As only about one-tenth of the references are 1idted
in Miss Bernstein'!s suasmary; and as no other comparable compil-
ation seems available; I hope Dr, Barrar's report will prove
useful,

At the same time, as it has not been carefully edited
or checked independently, persons doing original research on
existence and uniqueness theorems are advised to consult

original sources,

Garrett Birkhoff



I. NAVIER-STOKES XQUATIONS

A, Time Dependent

The time dependent Navier-Stokes equations for an incompresge-

sible viscous fluid arel’2’3:

ou, (x,t) du, (x,t)
(1a) ’ S uk(x,t ? ! w)/C72ui(x,t)
ot 2 Xy,

-’-13—’@—2 (x’t) <+ gi(x,t) [i = 1 .. n]
X
i

Q)

In these equations, ui(x, t) 1is the vector velocity;
p(x, t) the pressure; &(x, t) the gravitational force per unit
mass; and the constants © and )/ , the density and kinemetic
viscosity respectively, The usual boundary conditions are G»= 0
on any fixed rigid surfaceu’s, and in an infinite region -3(x, t)
-— {’i at infinity.

In the special case when g(x, t) is the gradient of a

potential G (e.g., when it is tie vector acceleration of gravity)

by setting

(2) p=LX _¢

the homogeneous equation

1For a derivation and related references, see [25, Vol. 1, p. 95].

Here and below, x = (xl, %55 xj) will denote vector position,
and o = (ul, U, uB), vector velocity,

X = (xl cor %)

2

3Repeated indices imply summation,
I

See [25, Vol. 2, p. 676].

2Cnly the fixed bourdary problem will be discussed in this paper,
For g discussion of the free boundary problem, see Lewy [42]. Alsy
only th2 incompressible case will bhe treated, as nc existence <.
nniguenecss theorems are known for the Navier-Stokes eguaticns for
compressible fluias, with non-zero viscosity.



2,

2 ,t x,t av
(3a) ——3%;§—~)+ u (x t) .:3( ) = l/§7“ (%,8) - £—= [4 = 1...n]

%y 2%
2uy(x,t)

{3b) -—“%;gz—-" ¢

1% obtained.

B, Two-Dimensional Case

In the two-dimensional case {i.e,, X = (XIXQ)] if ¢ =
curl Ti’, only f = 53 does nnt vanish, Hence, by taking the
curl of equation (3a) yields, in this case,

() Z5(x,e) + ul(x,t)j-x—f (x,8) = VT* (x,t), [1=1,2]

whereby the pressure potential P is eliminated,

Also in the two-dimensional case, equation (3b) permits the
introduction of a locally single-valued stream function6 ¥ (x,t)
such that

(5) u, = 2, e - 2¥
1 5y < 2 x

The use of ¥ eliminates the necessity for (3b),.
Then7

(6) C=-%v,
8

and hence equation (4) may be written

29 %(x,t) _2¥(x,t) 2 .2, .,

V g\ Ny

ot Jdx Ty ——55
it

—~
~d
T

=YV y(x, t) .,
See [52, Chap. 12, 82, equation (1)].
?See {52, Chap, 12, §2, equation (2)].

See [52, Chap, 12, B2, eguation (3)].



Similar simplifications are possible in the axially symmetric

case. but we shall not describe them,

Ce Steady Fiow

A motion is called steady (permanent, statiomary) if all the
partial derivatives with respect to time vanish., In steady motims,

the Navier-Stokes equaticns (la)-(1b) reduce to

2u(x)
(82) ;;qui(x) = Lk(x) 4 2p(x) + gy (x) (1 =1 ... n]
DXy axi
u, (x)
(8b) .2__1_'___—:: o .
ox%,

The usual boundary conditions are that 3 is given (usuzlly
zero) as ﬁs{x, t) on a rigld surface S, 2aad, in the csse <f an
infirite region, 3 apprcaches a given _3; at infinity,

For steady flows, equation (7) reduces to

(9)  yotu(x) = 2R 2 2y o 2u(x) 2 Ry

2%, 9x1 2 %Xy 2x2

It might be conjectured that, as t --> o, the solution of
any time dependent problem approaches the corresponding stationary
solution, Experimental evidence supports this conjecture for
equations (3) arnd (8) if R is sufficiently sma119, but noti®

for large R,

X1 1= the Teynolds number, defined as the dimensionless ratio
-, waere v is a typical velocity and L, a representa-
inear dimension,

[}

jce [5, po 23],
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11, PROBLEMS

A, Existence and Uniqueness; Time-Dependent Case

The mathematical problems concerned with the time dependent

Navier-Stokes equation (1) are of the initial value type usually
associated with parabolic differential equationsll. If Q is a
regicr in En(x1 cos xn) space, the problem here is to find a
solviion ui(x, t) of equation (1) im € and for O =t < T,
sich ihat ui(x, 0) = ui(x) in Q; and ui(xj t) = qis(x, t),
where .3°(x) is given in @, and '%S(x) is given on S, wken
X € 35, where S 1is the boundary of Q, Such a problem will te
denoted by Pt(Q).

Various tochaical difficulties arise depending on wheiher
Q 1is bdounded or net, and on the smoothness of the boundary S
of €, Vhen Q 1is unbounded, a condition such as uniformity
at irfiaity,

(@)  1m @(x, t) = 6 (t) ,

X|-=>e @

or finiteness of total energy,

(3) H u, (x,t) uy(x,¢)ax Z constant
Q

must also be inciuded to insure uniquenessla. When Q = En, the
initial values and ~oalition (a) or (ﬁ&) are all that are given,
To cttain exister? zuu uniqueness theorz2ms, S and ithe boundiy
vair ¢= w8t be desovited more explicitly than atsve, Thig wiil

ba 2.z In the #7o 0ameat of the throrems.,

- Yooy o

. specisl cuti: of Boussinesj flow [36, B33l4a), 1,e,, Vv =
v = U, U= U'z,t;  +~he Navier-Stokes equatioa (3) uctually re-

“ices to the hezt ~av:. “ion
: 2
2U vlz,t)
S5 (2,t) = ya-Bzt)
¢ o
Hence 1t seems pl-= 512 that the nrcblen: (v the time dopend i
Nav.cr-8tokes e: « .- 1o of taa parebciic vire.
12 N N YAt ars) -t N
kaemww 5 2 o i s e e e




3. fCase of Steady Flows

The mathematical problems concerned with the stezdy state

A
Navier-Stokes equation (8)

1)

re boundary value prohlems ugually as--
societed with differential equations of elliptic typalE(though see
(3%) below), If © and S arc as abovs, the problem is to find a
solution of equation (8) im Q, that takes on preassigned values

on S, This will be called problem P(Q).

C. Regularity of Solutions

For Laplace's equation §72U = O in n-dimensions, a solution

U 1in a regicon @Q 1is analytic in the interior of Q. 14 Moreover,

if a portion T of the boundary is a manifold of class c® an¢ tne

boundary value @ assumed by U on T 1is of class C°
Cn-l 15

, then in

any Q-neighbhorhood of T, U 1is of class

- r

For the stazdy

state problems discussed in this paper, analogous theorems have been
proved in some cases and are probably true in all cases, Those that

have been proved will be listed later in this paper.

For the heat equation §72U(x t) ~2U(x, t)/ 3t =0 in n
e . e L < <
dimensions, a soluticn in a region Q for tO -t - t1

in the space variables and of class ¢® in ¢t for ¥ in the in-

is analytic

<
terior of @ and to <t - tl' Moroever, if the initial values

are of class CP in Ql(§ Q, then the solvtion U 1is of class

Lrny irraotational stesdy flow in the special a8 oro 0
a2 s2guation fo; the stream function actual’y reduces to Laplace!
equzlion Qw (TliS will te discussed further om p. 16,) Fo.on
it B:gCue plaus hle that who problems for the steady state Navier-Sv--.:=

equation are of the boundary value type.
}

1456e (33, p. 220].

155ee (34,

16.. .
SGU L26J p. .2901.

m
[lp)

8 age of zero viec sitv,
-
3 &



2
Cn in x and of class Cn/‘ in t for x ¢ &1, t, : t : tlol7
For the time-dependent problems discussed in this paper analogous the~
orems have been proved in some cases and are probably true Ir all

cases. Thoseg that have been proved will be listed later in this paper.

D, Some Unexpected Resuits

To i1illustrate some of the pitfalls that must be avoided in deal-
ing with these problems, the following simple examples are given:

1. To obtain uniqueness in unbounded regions, the solution must
renain bounded. The following example18 shows this:
B(x, t) = —g}z exp (—x2/4t)
t

is a anon-vanishing solution of19

. 22
(10) 2% 2.,
7% ot
for t > O and
(11) lim B{(x, t) = 0, for all x,

t-->0
Hence, this function could be added on tc any snlution of the linear

equation (10) to spoil uniqueness propertieseo.

2. Physical intuition sometimes fails in mathematical problenms,
Consider the equation for the temperature in a one-dimensional in-
finite rod with variable heat conductivity
2

(12) 23 (x, t) = a(x, t) 20 (x, t) + b(x, t) 2 (x, t)
ot ox” Zox
+ c(x, t) U(x, t) + b(x, t)
a > 0,
Tsee [3].
See [9],

95ee footnote 11, p. 4 for the rclevance of this equation,

O
Note that xlimo H(x,t) i not defined. Thie 1s discussed more com-

. t. >0
plztely i [O0],

2

W R i e

s g

topearm + om
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Physically, it is plausible that if the temperalure is given through-
out for t = ta, the temperature is determined throughout for ¢t >

to, This, however, is not necessarily true,

For equation (12) to have at most one bounded solution in the

half-plane t > O approaching a given cnantinuous function for ¢t = O,

some condition such as that | a(y, t)
o
- 21

must be imposed, The following example shows this,

. - +
dy must diverge ior - «

For the self-adjoint equation

(13) 2 u(x, t) + ch®x (chaxux)x =0 ,

fw}
if d: (x) 1is the Gauss rormal functiom

X

2,
®(x) = §““ f -y /2 dy ,

then for each t < T,

(14) u(t, X) = -1+ (1 -~ th % f(- 1 + th X)

VETTTI“ET /QTT"Z'£7
is a bounded solution of (13) that (because |th x| 21 and

¢ (w) = 1) converges to zero for all x as t =-> T-,

3., The two-~dimensional siesady state Naviers~Stokes equation (9)
- ﬁ .
for the problem U= (0, O) on y = O, = (0, 0) on y=1 has
..)
the unique solution U = O, However, with the same boundary conditias

the incompressible ideal fluid equations have an infinite number oi

solutiors, (Any stream fumction v(y} of class C2 such that

¥'(0) = ¥'(1) = 0 and ¥"(y) = F(¢¥(y)) for arbitrary F will be
a solution22. )
2Tsee [21, p. 125].

“®see 152, Chap. 11, 81, No. 21,



ITX, CATALOG OF THREOREMS

A Navier-Stokes Equations

Leray [37] proved the existence, but not the uniqueness of sol-
vtions to problems P(Q%), P(¢°), P(E° - ¢°), and P(E - @) for
Navier-Stokes equation (8).23 He remarked that his method does not
generalize to P(Q") and P(E" - QP). 24 More specifically, his
results in E3 are

Theorem 1. Let Q3 be a bounded region in 23 of ..ass
B - h.22 Let o be of class C2 on § with

ja*3as=0.

S
Then there exists a regular solutiomn uy of problem P(Qj) for
equation (8) with u, = a; on 8,

Theorem 2: Let Q3 and E’ be defined as in Theorem 1, Let
A be a vector defined in E3 of divergence zero., Then there

exists a regular solution u of the homogeneous equation (8) with

i
u; = oy on S and lim Uy = a4 Moreover,

|%]->e
a2y 2a 2u 24
J 2.(3§J (-t - LhyZ2. 1y gx, ax, dx

] 1 2 73
£7-Q ka 2’xk ax,{ 2xk

is bounded,

To prove theorems 1 and 2, Leray used an early form of the

26 2

Leray-Schaucder theorem ~, Similar results hold in E,
In the time dependent case for the Pt(Ee) problem, Leray

[37] proved

53 will denote a bounded set in E",

1
‘Teearvically, this is becauae So (—%5§)2dvn does not exist for n > 3,

., A neighborhood of every point p € S be represented parametricslly
n e u,v), i-*,z 5, with all _D,x, being h- Llpschitz continuouns,
0.y D, x T + |vy-v | ] and the

2l

~r-
-

1 i( 1° 1)"9 X ( 2)' - k[}u -u

Jaeoblan O {xyx 3 uv\ being of rank two, Then Q 1is cal

“e21on of ¢l sg A- h. ¢ is a region of class A-h, and 211
~¥,. exist and are h—ulnqchitz continucus; then @ is said t¢ te
fi3s B - h, This is the notation used in [4

led

of

O T

3 1.
26 43

le

For & statemcnt and proof of the theorem, see |




9.

Theorem 3: Let 1, and zaﬁi(xlxe)/a Xy be bounded,

£9)

2)
L 27

coatinuous, and belong to L (, . Let 2>ui(xl, X2)/£9xi = 0,
Then there exists a unique solution ui(xlxet) of problem Pt(Ez)
for equation (3) for all time, with wu, (x;%,0) = u,(x;%,) and
such that ui(xlxat) and ;aui\xlxzt)/@xJ belong to L°(E®)
and are unuanded,

The method of procf is that of successive approximatioans,

Starting with an existence theorem for the Stokes equation (50),

Leray constructed the sequence

n
u, (x,t) n
(15a) S wvu )+ 2R ) 4 g fxe) M1 - 1,20
x
(15b) Zuin(x,t) o .
= ’

axi 1

-

n-l (x,t) 24y (x, t)
)

n
with gy = U

*k

He then showed uin approached the desired solution,

For the Pt(EB) problem, Leray [39] was not able to prove the
analogue of Theorem 3 for all time, but only for a neighborhood of
t = O. Similarly for the Pt(Qz) problem, when Q2 is convex
and of class B ~ h, Leray [38] was able to prove only a local
existeuace theorem in time, even for uy = 0O on S for t - C.

2)

3

bolidze [10, 14] obtained local existence theorems for Pt(Q
pt(QB)’ Pt(E2 - Qz) and Pt(E3 - Q}); and Cseen [56, p. 72] pre-
ceded lLeray in obtaining a local existence itheorem for problem
P, (E),
Actually, Leray [38, 39] went further than merely proving
local existence taeorems by successive approximations, On the oae
hand, he gave criteria under which his local solutions could be ev-

dx, dx,. < o,



1C.
tended for all time. When, for example [63] in problem Pt(EE) the
given initial conditions ui(x, C) have an axis of symmetry and when
lim inf g \&&ui(x, 0) ui(x, C) dv = 0 ,

=5

g, -

o <
qo q

vzere q 1s the distonce from any point x *o the axis of symmnetry,

y
it follows {rom Lerzv!s results tha

t the Navier-Stokea eguatinong
<0 have a urique soivtion for all time.

On the other hand, although Leray did not derive the existcice
of a ~egular solution for all time for the problem Pt(Ej), he did
derive the existencs (but not the uniqueness) of an irregular soiu-
tion28, which will now be defined,

Definition: wu,(x, t) 18 an irregular solution of equation (z,
when it satisfies the following three conditions:

A) O dces not differ from the time axis by more than a set
of measure zero; where O 1is described as follows. Define an
interval of regularity geTe on the time axis, one in the interior
of which the vector ui(x, t) 1is a regular solution of equation
(3), and one for which this statement cannot be made for any
interval containing geTe' O 1is the union of these disjoint
intervals,

B) The fumction :LS& ui(x, t)ui(x, t)dxldxgdx3 is decreas-
ing on O and the 1n1t§a1 time t = O,

C) When t --> t'!', then ui(x, t') --> ui(x, t) weakly in
L2 norm,

Leray [38] obtained similar results for the Pt(Qe) problem in

a convex region,

art 2,
] is

28, . -

“8Leray called them turbulent solnutions, Duhem [18, 1st Ser. F
Chap, 3, Bo] speaks of irregniar solutions. Oseen [56, p. 72
4150 concerncd with them,
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Leray [39] conjectured that some problems may have irregular
but not regular sniuvtions, He suggested that if one could find a

function 7i(x) belconging to L2(E3) and saticfying

\ SV
(16a) )/V2v'i - a\'f[vi + X g 1) - 90 . i Vi i [a > 0]
axk I %y 2 X
2V
(16b) —E .0,
7 *k

then the initial values

-1/2x)

- vi(2aT
(17) g, (x, 0) = "4
Y2ZaT
would have no corresponding regular solution for all time, but

would have the irregular solution

v [2a(T - £)~1/24;

(18a) ny = , for te [0, T)
y2a(T - t)
(18b) u, =0, for t=T,

However, as yet no one has constructed the desired vector
vi(x).

Hopf [30] developed a method for establishing "weak" solutions
of equations (3), Although he obtained his results much more
simply than Leray, and they apply to any region and any dimension,
hig regularity results for "woak!" sclutisns are oo t g
Leray's for irregular solutions, Hopf's definition of a weak solu-
tion is given below,

Definition: Let G be any open set in gl (x1 ces X

n’
gpace, Let N be the class of vectors '3 of class C2 with com-

t)

nact support ir G. If some vector ° belongs t» L‘(G) aund

gatisfies




N [ 20
i
(A) JG\ 1 u, dx dt + jﬁ it Y uyu, dx dt +V “ 2l et = 0
ot Zxa o G 9X;3%3
” 3

for all & belooging to N, with div

(B) &3 °h_ 4 dx dt = 0 ,

for all h TUbelonging to N,

then - 1is called a weak solution of (3).

Honf showed that a weak solutior of (3) in G which belonged
to CQ(G) is actually a regular solution,

In connection with (A) and (B) above, it is interesting to
gote that Weyl [74] showed that if U belonged to L2(G) and
Sé UAh dVv= 0 for all h belonging to N, then u = u* a,c.,
where u* 1is a regular solution of Laplace's equation. 1In other
words, he showed that ¢ -2k solution in this case is actually 2
regular solution, However, the corresponding result has not beer
wroved for equation (3), whose non-linearity makes this a difficul+
proclem,

Lnother approach to P E2) for equation (3) is that taker by

¢ (
Kampé de Fériet in [32]., He showed that tue Iourier transform

(19) z(wlwz,t) = Zi?z JJ; g(x,y,t) exp[-i(w1x+w2y)]dx dy

of the vorticity t:(x,y,t) agsociated with the two-dimensional
flow of an incompressible fluid extending over the eutire (x,y)-
plane, with finite kinetic energy and éf € L, transforms equation
(%) into 29

. i 2 2
(20) é;? z(wl,wa,t) = -)/(w1 + Wy )Z(wlwet) +

[‘[ glwz - eow - \ A
20Jo ( s )z(eloet)z(91+w1,92+w,‘,t;‘eld¢.
E e, +0

1 2
29Assun ng there is a solutgon to equation (20) leads to the praglem
gtermining a vector v 1in,a given region Q, when <curl v and
div ¢ are given in Q, and Vn is given oa S, 4 prooi of
uniqueness can be found in {52, p. UET] and a proof of existence in
g?an -':'a. 16"'2@] e

S en
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13,
Bellman [4], starting with equatjon (2C) and the initial con-

dition z(w,w,,0} = p(w,w,), derived by successive approximations
Theorem 4: If max |¢(w1w2)| is sufficiently small, there is

a soiution of (20) which is unique z(w1w20) = ¢(w1w2) and satis-

fies the 1nequality3o

8 max |¢(w1w2)!

!z(wlwat)l

- 2 2 2
[1 + L/(w1 + wy it}

31

B, Incompressible, Non-Viscous Fluids

In the case when R = =, equation (1) reduces to the equations

of motion of an ideal incompressible fluid32

u,(x,t) Zu,(x,t) IP(x, t)
(21a) El_ii___. + uk(x,t) i = + gi{x,t) [i=1..n]
2t 2 X 2%
2u,(x,t
(21b) 1) )
9 %y

3 .2
The usual boundary conditions are u *° n = O, 1instead of u= O,

on any fixed rigid surface.

In this case, equation (4) reduces to

2 ~(x,t
o) 25,0 22 0 e,
ot 2 %Xy

which means that é: i5 constant along the path of every particlejB.

When R = =, equation (8) reduces to
2u, (x) 2P(x)
(23a) u, (¥) —— =
2 Xy 2 %y
3 uy(x)

(23b) "—:—_T“-'—"‘;? o .
I X,
4

+ gi(x) [t =1 .,. n)

0/-“

0

Although this is no improvement over Leray's result, th

is interesting. ' y » the approach
31

32For ideal flow for compressible fluids, see [50, 69, and 8).
See {52, Chap. 10, B1, No. 6].

3‘?ibid0, NOm 1].

3
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f) The divergence is zero

g) The normal ccmponent of the velocity at the boundary is zero

h) The paths of the moving point dx/dt = u, dy/dt = ;ft};==a,
y=b, at t = O, exist; and at each instant there is a one to one,
continuous area preserving relation between (a, b) and (x, y),
(a, b) e R, (x, y) ¢ R

i) The vortex density is constant along the moving point, and
in each finite time interval satisfies a uniform Lipschitz condition
witn respect to x, y, and t.

Lichtenstein [46]} earlier proved the following local type of
=xI1stence theorem for the plane,

Theorem 6: Let a solution of problem Pt(Ea) oi the ideal in-
renpressible fluild equations exist for to - t : t1 with initial
volues E;(x), Then if the initial values 'Ei(x) are changed

J,
511ght1y35 to IE;(X), a unlque so{ytion to problem Pt(Ea) will
exist for the initial conditions ,G;(x) for t_ R ti.

Although this theorem does not constitute an improvement over
the theorems of Wolbiner, Schaeffer and Hllder, Maruhn [49] extended
it to axially symmetric initial conditions in E3 whichk is not cov-
erzd by their two-~-dimensional tiecrems,

In the steady =tate case, restricted to irrotational motion,
the problem is reduced to the Neumann problem in potential theory36.
The existence and uniqueness theorems for this problem can be found

in Xellogg [33] and Gunther [27].

—-— ~ ~ X
22 JUy(x) - )< e |p 00x) -y Wix)| <€ (1= 1,2]

36gee [52, Chap. 11, 83, p. bho].



i5,
| .
The divergence 1s zero

with

£)
é) The normal component of the velocity at the boundary is zero
h) The paths of the moving point dx/dt = u, dy/dt = v,/ x =a,

y=Db, at t = O, exist; and at cach instant there is a one to one,
continuous area preserving relation between (a, b) and (x, y!,
(a, b) e R, (x, y) e R

i) The vortex density is constant along the moving noint, and
in each finite time intervai satisfies a uniform Lipechitz condition
wikn respect to x, y, and t,

Lichtenstein [4#6]) earlier proved the following local type of
»ristence theorem for the plane,

Theorem 6: Let a solution of problem Pt(Ez) of the ideal in-
cempresgsible fluid equations exist for to z t N t1 with initial

~ ",
velues Uo(x). Tihep if the initial values Uo(x) are changed
~J

* “ 35 ~ 2
slightly’2 to U (x), a unique solution to problem P, (E Yy wila
5 <
€xi3t for the initial conditions Uo(x) for tb z t - tl;

Alihohgh this theordm doed not constitute hn improvement over
the theorems of Wolbiner, Schaeffer and H8lder, Maruhn [49] extended
it to axially symmetric initial conditions in Ej5 which is not cov-
ered by their two-dimensional theorems,

In the steady state case, restricted to irrotational motion,
the problem 18 reduced to the Neumann problem in potential theory36.

The existence and uniqueness thecrems for this problem can be found

in Xellogg [ 33] and Gunther [27].

~J

35 |§i(x) - WC(x) < e |Dy ﬁ?(x) - D1:53(8)| e [1

i,2]

30see [52, Chap. 11, B3, p. 4b0].
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C. Burgers' Cne-Dimensional Analogue

To gain better insight into the Navier-Stokes equations,

Burgere [6 and 7] and Hopf [29] have studied the cune-dimensional

apalogue
n
2u(x,,t) Sul(xy,t) sul(x,,t)
(24) - tu(xy, t) —E =y L.
2t axl axl

This is evidently a non-linear paraboliic equuiion,

Hopf [29] observed that the transformation

(25) g = exp -Elpf\udx
or
(26) u=-2u8/8

takes a solution of Burgers'! equation (24) into the heat equation
14 i -
\27) ¢t = )/ﬁxx 1]

and vice versa, (See also J. D, Cole, Quart, Appl, Math., 9 (1951)
225-236, )

Thus by using known ttecorems for (27), Honf established

Theorem 7: Suppose that uo(x) is integrable in every
finite x-interval and that
(28) jx ue(e)dg = o(xz), for |x| large .
o

Then

®

(

YEY exp - - F(x, y, t) dy

(29) u(x,t) = =

where

. 2 y
(30) F(x, y, t) = i%‘-;—i‘- + X u (n) dn
0

is & regular solution of (24) in the half-plane t > ¢ that
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satisfies the initial conditicns

cX .'“a
~ N 1 X === a
(31) Jo ult, t) ag - o ui(£) de, as {T TG,
for every a, If, ir addition, uo(x) is continuous for x = a,
then
(32) u(x, t) --> uo(a), as x -->a, t --> 0,

A solution of (24) which is regular in some strip C < ¢t < T
and satisfies (31) for ecach value of the number a, necessarily

coincides with (29) in the strir.

The Case R -=> o _ If ui(x, t, V) is a solution of the
Mavier-Stokes equation (3) for a given L in a given region Q,
taking prescribed values on S, the boundary of Q, a problem is
to find what limit (if any) ui(x, t, 4 ) approaches as R =-> o,

From results obtained for equation (24), Hopf [29, p. 201]
conjectured that in the intciior of €@ as R --> o, ul(x, t, V)
approaches a "generalized" soluticen of the ideal incompressible
equations (21).37’38 The approach, however, cannot be uniform at

the boundary becausc & viscous fluid adheres to the wall, and an

ideal fluid slides along it°2,

D. The Boundary Layer Equation

To study the behavior of afluid in the neighborhood of the

boundary as R --> «, Prandtl [62) derived the boundary layer
4ec,41

eguation

>Trhis "seneralized" solution is a weak solution of (21) in the
sense given on p. 11 of this report,

38Wasow [T1] treats the case 1lim qu(x,y) + A %?% = Nf(x,y).
Ae=>®

Oseen [56, Part 3] also treats the linear case,
3

c
““see [73, p. 383].
Mx o= 4t, y= 6N where pB/L~1/ VR .

HlFﬂT physical background, see [25, Vol, 1, Chap, 2] apnd [17].
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L w2, .. R 2, 3

20 82N 2E 9#2 oan It “Pﬂ

’

when 7 1is the straight-line boundary of the two-dimensional
regicn @, and f£(&) 1is given.

The boundary laver equation in the stecady state case may be
conveniently given in a form due to von Mises [51], Setting

.2 -
zZ=K - (—

o

.2

)= as the dependent variable, and Yy and £ as

I!

5
independent variabies, von Mises reduced (33) to the non-linear

3

parabolic equation

Y-

g e e 0
(34) —9——:=\/k -z —éﬁm(e)z .

This form is very convenieht for theoretical discussion,
For the von Mises equation (34), Piscounov [61] pfdved
Theorem 8: Let z(0, ¥) = B(v), =z(f, C) = k(¢) and

z(£, w) = O, Moreover, let
a) B(0) = k(0), B=) = O
b) k(0) - #(y) for v > O

B(¥) = k(0) - ¥ 10r some e, > O, with ¥ < €

k(€) be continuous and non—decreasinqu.

(o]

o))

Then under these boundary conditions, the egquation

(341) z,, = (%(¢) - z)"V/2 2,

Arlr £
has a solution, Horeover, let

. . > <
e) ¢"(y) - 0 for some €, > C with y - €50
Then the solution is umique.

When the boundary is an anglec of /A, Falkner and Skan {19]

42This means a favorable pressure gradient, i,e,, the flow is

accelerating.
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reduced the boundary layer cquation to an ordinary differentiail
equation, Weyl [73] gave an cexistence but not a uniqueness theorem
for the differentisl equation., Using conformal coordinates (&, 77)
with ds® = dx12 + dx22 = (dg2 + dnz) e(#, N), he obtained the

more general fora

2 — 2 3
(35) n(e)[k3(z) - (22 . 2 2% 22y 2V
21 2t 20 21 97_772 ot EXY

. , 1 . -
where a) 7= O 1is the boundary, b) h(€) = 5 d log e(g, 0)/dE,

c) 3v/2n=uye, N - k() for N --> w,

E, Gencral Theory of Non-Lincar Parabolic Equations.,

The only results for non-linear parabolic ecquations apply to
noc-singular equations for bounded regions, Although these result
cannot be dircctly applied to the von Mises equaticon, it is con-
ceivable that through some suitable limiting process they can,

Gevrey [23, §§28-29], through successive approximations, ob-
tainecd what are probably the best rcsults for non-linear paraboiic
equations, To indicate the scope of his results, they are given
below in a simplified form., By coordinato transformations and
extension of boundary values to all of {x,t)-space, the thcorems
can be applied under more general conditions than given herc,

Let T= {}, ylx e [0, 1], y e [0, 1]} .

Theorcm 9: Let f£(x, y, 2, p) 43 be such that

<
(36) lf(xlylzlpl) - f(xeyezepz)' - K[|x1"x2|v+ly1"YQly
+ |2‘1+22[ + ‘Pl "p2|]

for (x, y) ¢ T, lz|, |p| < N, Then thore exists a unique solu-

tion to the problemuu

u_\_____._...a
7 p= Sz/2x, q= I2/57Y.
y

I .
Albers [1] generalized this to n  dimonsions,
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Bez 32 (x=C
(37) —x - == = f(x,y,z,p) in T with =z =0 on é x=1.
EL =) iy =0

~

Theorem 10: Let g(x, vy, z, o, q) be such that S¢/3 v,

og/3z, Sg/ov, SH8/2q exist and satisfy a condition similar
to (36) with the addition of a term in Iq1 - q2|. Let 2g/3q

> 0, Then theroe exists a unigue solution tc the differcential

equation
!
2 S i X =
(38) 7z _ 2z _ g{x,y,z,p,q) in T, with z =0 omix = 1 .

Another approach to the coxistence thcocoroems for the von Mises
and other non-linear parabolic cquations is through diZfcrence
cquations. Luckert [48] assumecd equation (35') had a solﬁtion,
and showed how to obtain it by diffcerence equations, John [31],
among others, proved the convergence of solutions of differcence

45

equations to solutions of parabolic equations in many cascs .

F. Oseen Equation,

In a given unbounded region Q, equation (1) simpiifies to

ou
the lincecar Oscen equation46 by replacing the torm u ——3—-by
Qu x aﬁ{
the approximation 4 5%, where @, = x}iT>m u (x,t), “his

gives an asymptotic approximation for cquation (1) at large dis-

tanccs, By rotating the Xy axis paralicl to the Gk vector, the

Oscen equation reduces to

u (x,t) su, (x t) ~
(39) _,_.i;___ + Gl ._l‘._}_._. =y u, (x,t) +a_c:‘:_'_(§_&£). + gi(x,t),
t & X . X
1 i

(1 =1.., n];
as usual, we also assume (1b), In the stcady case, (39) reduces

to

s

-
*550e John's [31] bibliocgraphy on this subjcct.
*0sec [60].



2 2p(x) = guy(x)
(40) v u,(x) + -y ————=g,(x), [ 1=1,,. nl,
Vo 5%, 1 75 %] 1

The two-dimensional homogeneous equation (4) for the stream

function becomes

52, - 5o (%
()-I.l) ay l’(}) t) - ul a———v—.ul_(hL—t—).= )/7410()(,1'.) 3
ot g *

and in the steady state case,

, - 2yl
(42) vo'u(x) = - o, 2=l
=R
Oseen [57, 58, %9] treatced the homogoncous equations (39) and

(40) in E2 and E° but always in a domain of the form x, z C,

corresponding to a flow extcnding to infinity on one sidec of a
fixed streamline, His method is that of integral cquations, Fawen
[20], also by integral cquations, derived

Theorenm 11: Problenms P(Qj) and P(Ej - Q}) both have one
and only onc solution when QB is of class B - h and when

u = a; on S, for continuous « and when

i’
A. For P(Q), jsg'cr))ds—*— A
B. For P(E> - @), U -->0C as 1/r.

The sanc result appiics in Ee. In both the two-and three-

dimcnsional cases the solutions are of class C°  in the interior,

P

G. Fokker-Fianck HBgquaiiosn

The 0Osecen equation is similar in form to the Fokker-Planck

equaticn
2 .
2u(x,t) _ 2 “u 2 u ey 4
(43) =~ =L ay4(x,t) EECER +2 by(x,t) 5%, + e(xturi(x,t)

with the matrix ||a1Jj| positive definite, Thus (41) is scen as
a special casc of (M}), if T72wz= {f; is taken as the depoendoent

variabkle, Equation {43) applics tc diffusion with varicble, non-
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isotropic diffusivity.

For tho Fokker-Planck equation, Feller {21] defined a funda-

mental solution u(x, t; &,7') for thoe homopcneous cgquation

(12') ut(x,t) = a(x,t)u__ + b(x,t)ux(x,t) + e(x,t)u,

xX
as follows:
1. As a fuaction of x, t; u(x,t; ¢, () satisfics (12')

; u(x,t; £, () satisfies the

-3

2. As a function of £,

adjoint equation wu, (x,t) = (a(x,t)ux\x - (bu), + cu

J’f(x) a<x<b
3. lim u(x,t;6,T) £(&) d¢ =

t-—>

pC—o

l\ o) X <aorb«<x

for f(x) continuous. (If thc range of x 4is not finite, sonc
additional condition on f£(x) is neceded., A sufficicnt condition
is that f(x) is boundcd.)

L. The above propertics hold throughout the infinite range

<
_m<x<oo’ to'<{)<t-t1,

——~p

u(x,t,s, ©. Ju(s,t;€, ( )ds = u(x,t; €,77) .

3

Undcer the assunmptions

1 p
A', For to £t tl

arc y-Lipschitz continuous in x and t,

and all x; a, a a a b, b_, ¢

B's a,1/a,\,Ay, ¢ arc bounded wherc A =b - ax/2 + vV ¢t

X
and where  @(x,t) :& a(y,t)"l/g dy,
o

he proved in [21] the existence of a fundamental solution for (121).
Dresscl [15, 16] gencorialized this result to cquation (43), Rec-

ently Weber [72] extended it to the cquation

n
. o2 T 2 < S
Loaj, —2— 4/ (x, 8ha, P v AU+ SE e oo
i v PAu. 5 = - A oS
ij \J“i"xj i=1 ¥y X, ct
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Fundamental solutions are used to provoe the existence oif soi-
utions of initial valuc problems, Using the concept of a funda-
mental solution, Feller [21] showed that Pt(El) for cquation (12)
has a unique bounded solution U that approaches a continuous
@(x) for t --> €, when £(x, t) has continuous bounded first
derivatives, and the cocfficients satisfy assumptions Af, B! abovgg

When the coefficients satisfy +-Lipschitz conditions, problem
Pt(Qn) for cquation (43) has onc and only onc solution for contin-
uous initial and boundary valucs as shown in Barrar [3],

In order to treat singular Fokker-Planck cquations, for cx-

ample, when a(rl) = 0 in

(&) ut(t,x) = a(x)uxx(t,x) + b(x)ux(t, x)
and its adjoint

5 a 7/ \
(45) v, (t,x) = =% (3 (a(x) v(t,x)) - bix) v(t, x)]
in the interval [rl, r2], Feller [22] used an approach which

depends on the Hille-Yosida theoroem for generators of semi—groupu;

-
‘7§ocent1y John [31, p. 165] cxtended this theorem to apply when
ff’x) is bounded and Riemann integrable,

48

Hille-Yosida thoorem: Lot S be a contraction senmi-group with range
dense in the Banach space X in which positive clements are defined,
[i.o.,, S is a set of transformaticns T (with t > 0) such that to
cach x € X and cach t > (¢, there corrcsponds an clement T,x € X

such that T, . X = Tt(Tsx)° Further.rore, t
a, [[Tt+h x<~ Ttxll ~=> 0 as h --> 0
I IENTHI
c, X = O implics T % - C]

The infinitesimal gencerator A is an additive operator whose domain
is dense in X and such that tec each x € ¥ and 2ach X > 0 thae
exists a unique Y\ belonging to donain of A with

A, lyx - Ayk = X
B. A llg/l 2 [[x]]
Co vy 2 0 whencver x = Q

Conversely, an additive operator with these properties is the in-

finiteaimal gencrator of a contraciion scmi-group with range donsc
in X, The inverse y, = (AT - A) is called the resolvent of §,

For a proof, sce [76%;
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He assumad at'(x), b(x) are continuous, but not nccessarily

bounded, in the open interval (rlrg) and a > 0. To cxproess his
results, hc defined

X
w(x) = °xp [~ 8 b(s) a*l(s) es],

o
where X, € (rlrg) is fixed, F& uscd the regularity condition that
the boundary r is called regular if w(x) belongs to the space
of integrable functions on (xo,rjléf(xo,rj), and a“l(x)wwl(x)

belongs to <;i(xo,rj). Thus, for example, for the cequation wu, =

t

Uyx? Ty is regular if and only if ry is finite, With this nota-
ticen, ho derived

Theorem 12: Under the above conditions, when nene of the

bcundarices is regular, therc exists onc and only one fundamecnt:l
solution common to (44) and (45)., Vhen onc or both boundarizs area
regular, then a necessary and sufficient condition that (44) and
(45) have a common fundamental solution is that thcere exist cons

stants pJ, qJ such that

(46) a 1lim  u(t,x) + pJ(-l)j 1im w-l(x)ux(t,x) = 0
X-~>T, X-=>r

(347) a4 lim wix)a(x)v(t,x) + p (-1)7 1im ([a(x)v(t,x)],
x-->rJ J X-~>rj

- b(x) v(t,x)) = 0,
respectively at the regular boundaries,
Feller called (46) and {(47) the "gonceralized elassical boundary
conditions," Wis method of proof works only whoen the cosfficients
in (44) and (45) do not depond on the time,

~h
o

—
——

n
Govrey obtaincd cexistence theorems fer Pt(Q ) for the

parabolic system of cquations

n
2 AU g U
T Us. > < ) —
(18) £ a§J 2% Ly ——5-+‘ﬁi bgj u,ﬁ;}w-z,clur ~ £, [k=1..n),
»J X5 X, Yot - 3K, bh :

3



e

£ra
whoni agj is positive definiteo, bk < 0 and when € is eof class
B - h and the coefficicnts are vy-Lipschitz continuous, PBowoavoer,
it does not sceem possible to apply thesce resultis to Osoon's
equation,

At this point it is intcresting to note the follewing

=1 .,. n of {(48) be a sym-

Thcorem 13: Lot (aij) for k
L 4 id
metric positive definite form in Qn for 0 -t s 7T, Let bl < 0.

f,, of (48) all bc y-Lipschitz continuous in

h ?

"
T, Let Q be of class B = h. Then therc cvxists
onc and only onc rcgular solution to problem Pt(Qn) for O -t
k;49if and only if thc homogoencous
problem50 has only the trivial solution Uk 20, k=1 ,.,8.

<
-~ T, for precassigned valucs of U

Proof:f51 The theorem will be proved, without loss of genorality
for Uk(x,t) =0 for x €S and t = C, Let H be the Banach
space of vaectors ; = (wl ees ¥..) such that each wi is v-Lip-

-4) n 4 Q 2
schitz continuous, with |[|¥]]| = é;i llwil!va. 52 ror any given

: - =
J € H, 1let U{y) = (U1 «es U ) be tho vector such that

< -~ 2.k k " X € S
g_a’;, 27y 20U = V. U"(x,t):(‘&:(‘
13 ngiaxJ 2t - .

[k = 1 e o0 n]
Then let
3,3 > .k 3Uh <k
L(3(F)), =L by, —2+ 7 cf v
Wi > Xy

and

_9 .

F = (f-! ec e fn}e

49 o 1
i.e., Ul{(x,o) = U (x); Uk('x‘,t) = U (x,t) for x & S, with

Uz(x) and Ul(x,t) given eontinuous functions thatagree when
t = 0

5Oi.e., Ui(x) = Ul(x,t) = 0 ia footrote 49 above, and f, & C,
k=1,., n,

51 the proof is in the spirit of Schauder [6%5, Chap., 41,

52!|W1[|3“ = max Iwil + CW’ where C. = g.l.b. of 2all C's such that

¥

n
- . - L, IRATEN N . ) o
Iﬂi(xi,tl)-wj(xg,t2)|— C[]xl-xglw+gi1~t2!'| and whors x5, € 8%,




Using this notation, cquation (48) may be written
5 3 3 -
¥ + L(U(y) = F, v, FeR .

~
From results in [3], it follows that L{(U{y)) is a completely
continuous lincar opecrator taking H into H, Thus by the
Hildcbrandét-Riesz theoremSB, equation (48) has a solution if and

only if the homogencous equation has only the trivial solutionBu.

H. Otokes's Eg

uations (Case R | C)
Equation (1) may be plausibly simplificd at low Reynolds
nunmber R << 1 by assuming that all velocities are very small,

and thus complately neglecting the term U, Z9ut/2)xk quadratic

=
in the velocities, The resulting Stokes equationSJ
2 u,(x,t) 2

(boa) R DA V§7ui(x,t) +‘?12 (x,t) + gi(x,t) [t =1 ... n)

7t f;jxi
, 2u,(x,t)
(4gb) —— =10

2%,

or, in the steady statco,

(502) 7 Puy(x) + 2p/3 %, = ey(x,t)  [i=1...n]

(50b) aui(x)/[:‘/xi = 0
is mathematically a special case of the Oscen equation,
The two-dimensional homogeneous equation for the sircam

function beccmes

(rl) V<74W(X,t)

= ‘VVLW(x,t) .
<ot

In the steady state, it becumes the biharmonic equation

{52) Ty = 0,

-
PFor a statement and prooi, msee [2, p., 150]).

DHNO known uniqueness theorem is applicable to equation (43). The
one in [24] uses integral equations,
55

-
“See [ﬁb],
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For the Stokes eqguations, Odqvist [S4] derived a rcsult sim.
ilar to Theorem 11 for P(Q), P(E ~ 0°), P(0°) and P(E® - @)
under the somewhat weaker restriction that Q 1s of class Ah,
His results also cover the inhomogeneous equation when g is
bounded and y-Lipschitz continucus, 0Odqvist was able to char-
acterize the behavior of the solutions of the Stokes eqﬁation more
precisely than Faxen could characterizc the behavior of the sol-
utions of the Oseen equation, For example, Odqvist proved that if

2
Q@ 18 of class PBh, and the boundary values are of class C ,

then the solution is of class C° in Q.

2) and P (EB). For example,

Leray [37, 38] discussed P t

¢ (B

n [39] he derived

Theorem 141 Let Gi(x) be continuous and belong to Lﬁ(EB).
Let there oxist a continuous function £(t) for t € [C, t] such
tiiat i
\ <
3' gi P t)gi(x t)dv - £(t) .

Let Ei‘gi(x,t)/é’xJ exist., Then pt(EB) for Stokes cquation (49)
has one and only one solution ui(x,t) with ui(x,O) = Gi(x), and
such that there exists a continucus function g(t) defined for
t € [0, T] such that

l\i\a} uy (x, 0, (x,t) = g(t) .

He derived a similar result in [38] for Pt(Q2)
convex and of class B - h, and with u, = ¢ on S. In [4C] he
gave a method (without details) to transfer Pt(QE) and
Pt(E2 - QE) to Volterra integral equations, and thus gave a way
to obhtain cxistence theorenms,

For Pt(Qj) and Pt(23 ~ Q3), Odavist [55], by a Laplace
tyansformation, orthogonal series, and integral equations, ob-

4
tatned the corresponding existoace theorems whon 70 d1s of ¢l

3.\

t
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Bh. Bowever, Qdgvist, duc to techtinical difficulties, had to assume
Dk(ui(x, 0))= 0, k=20,1, ,,. 4 for x € S,
Dolidze [il, 12, 13] was also concerned with Pt(Q}),

Pt(E3 - Qj), Pt(QE) and Pt(E2 - 02). The cxistence thcorems

in [13] may possibly be more general than thosc in Leray [38] and
Odqvist [55]. However, J. Kravichcenko [Math, Rev. 9 (1948) 116-117]
has said that Dolidze's reasoning is very condensed and his hypo-
theses are not clear., Kneale [35] treated the axially symmetric
case, deducing his existence theorcems from known ones for the bi-
harmonic equation,

Uniqueness theorems for the Stokes equations are readily proved
The proof for the steady statc case is given in Lichtcenstein [47,

p. 394]; the proof for the timc dependent case , in Leray [39, p.

For the biharmonic equation, SchrBder [66] obtained existocnce

[ 9]
and uniguencss theorems for {74w = 0 for P(Qg), P(Q3): ?(E“wQE),

and P(E° - @°) when Q is of class Ah, with 3y/Jx, --> a,

=z
on 8, For the ?(E3 - @) existonce and uniqueness theorcem, he

postulated that 5'w/5;x1 vanished as 1/r, For the P(E2 - QQ)

cxistence and uniqueness theorem, he postulated that S v/5 x; was
bonnded at infinity, This is connected with the Stokes paradox,

witich can be stated as foliows,

SBSinmzthe Navier-Stokes equations are not linear, a more complicatcd
proof is needed for them, However, it is very simiiar to the proof
above, See¢ {39, p. 221], Leray's proof also works for Cscen's
equation,

56A1though the proof on p, 25 does not apply to the time dependont
Stokes aad Osecn cquations, it may be conjecturcd that it can be
modified to do so. Since uniquencess thecorems are known for the
8tokes and Oseen cquations, the proof would then yield an exist-
ence theorem, It would also yicld stronger bounds on the behavior
of the solution than previously proved, because with this proof it
is pc-sible to go dircectly from the Fokker-Planck to the Csccen and
Stokes cquations, There is a similar rclationship between elliptic
cquations and the gteady state Stokes and Oscen equations,
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Although a solution of the steady state homogencous Stokes

—
equation (50) exists for the boundary conditions U = O orn the

surface of a sphere and -3 - Uw at infinity, the corresponiiug
solution for the two-dimensional problem of 'ﬁrﬂ C on the surface
of an infinite circular cylinder does not existST.

Odqvist [54] also obtained existence thcorems for the two-
dimensional biharmonic equation, but his results arc not as gen-
eral, nor does he describe the behavior at infinity as specifically
as Schr8der,

In Schrdder [67], properties of solutions of §74W = 0 are
studied very carefully, For example, he proves that if S is a
manifold of class Cn, and the boundary values are of class Cn,
then v 1is of class c® in 8. Other properties for them can be
found in Nicolesco [53], In [53, B8], for cxample, he gives the
proof that a biharmonic (in fact, a polyharmonic) function defined
in Q 418 analytic in the intorior of Q.

From kaown results about Poisson's cquation <72U = g, 1t

58

is possible teo construct a particular solution of \/4U = f
Thus because of the linearity of the biharmonic equation, all ex-
istence theorems for the homogeneous equation also apply to the in-
homogeneous,

Similarly, just as particular solutions of Poisson's eguation
in infinite space may be constructed with 1/r, particular solu-
tions of Oscen's and Stokess equations may be constructed with the
tensors given in [56], so that the results for the homogeneous
equation again apply to the inhomogencous,

?Tsce [5, p, 33) and [35].

58Let U=4 £ % ¢¥;. If 21l D f arc y-Lipschitz continuous, then
s
all Dn+2% are y-Lipschitz continuous; furthermore, VEU = I
for f vy~Lipschitz ﬁgptinuous [MB,QﬁBO .A/from these results, it
can b2 scen that U= f where U= U T de' It Q= 5,
then it is necessary to assume f = O(F-2)" or’ a similar candition.
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